

University of Global Village (UGV), Barishal

Practical Skill Development and Assessment Process form (PSDAP)

Name of Subject: -Artificial Intelligence	Department: CSE
Subject Code: CSE-405	Semester: 7th

Student Name: Md. Riadul Islam

Session:

Student Id: Section:

Credit: Total Marks:

Obtain Marks:	
----------------------	--

SL No:	Title of Practical Skills	Details of Practical Skills	Date of	Topic wise mark Allocation	Marks Obtain (Pass mark- 80%)		Status		Name of the Instructor/Lab Asst./Lab	Signature of Instructor/Lab Asst./Lab	Signature of External
			Execute		Cont. Assess ment	Asses	С	NC	Expert	Expert	
1.	Turing Test for a real-life problem	Implementing a system that responds intelligently and evaluating whether humans can distinguish it from a real person.									
2.	Chatbot for a topic	Developing a dialogue- based chatbot that answers questions on a specific subject using predefined logic or AI.									
3.	BFS applied to Tree problem	Using Breadth-First Search to traverse a tree level by level and find specific nodes or solutions.									

4.	DFS applied to Tree problem	Implementing Depth- First Search to explore a tree deeply before backtracking for solution discovery.				
5.	Solve Maze problem using BFS	Applying BFS to find the shortest path from start to goal in a maze.				
6.	Solve Maze problem using DFS	Using DFS to explore paths inside a maze, possibly finding a solution without guaranteeing shortest path.				
7.	Solve 8-puzzle problem using BFS	Searching for the solution to the 8-puzzle using BFS to guarantee the shortest number of moves.				
8.	Solve N-Queen problem using DFS	Placing N queens on a chessboard such that none attack each other using backtracking (DFS).				
9.	Solve 8-puzzle using Informed Search (GBFS)	Using Greedy Best First Search with heuristics to solve the 8-puzzle faster than uninformed methods.				
10.	Maze problem using Informed Search (GBFS)	Solving maze navigation with heuristic-based GBFS for quicker decision making.				

11.	Maze problem using Informed Search (A*)	Finding optimal maze paths using the A* algorithm combining actual cost and heuristic estimation.					
12.	Conditional Probabilities	Applying probability rules to calculate outcomes based on prior known events or dependencies.					
13.	TSP solved using Genetic Algorithm	Using evolutionary processes such as mutation and crossover to approximate an optimal Traveling Salesman route.					
14.	TSP solved using Ant Colony Optimization	Simulating ant behavior using pheromone trails to find optimized paths in the Traveling Salesman Problem.					
15.	ANN forward and backward pass	Implementing Artificial Neural Network training using forward propagation and backpropagation to adjust weights.					
16.	Fuzzy Logic for car speed control	Using fuzzy rules to determine car speed decisions based on gradual and human-like reasoning.					